诚寻:熟悉“自然语言处理”的同学,做部分新闻文本的情绪分析
- hgz666 LV.工兵
- 2020/2/20 20:04:43
本人由于论文需要,诚寻熟悉自然语言处理的小伙伴,做“澎湃新闻”官网关于新冠肺炎时期的新闻文本情绪分析,有意愿的小伙伴请速速联系我,价格从优且不菲(wechat:kyyyn55,电话:13990700371)添加好友时要备注哦。
具体需求:二、 文本采集与情感分析
(一) 文本挖掘(爬虫或八爪鱼)
1.对象:澎湃新闻
2.抽样平台:澎湃新闻官方网站(澎湃新闻粉丝略胜一筹)
3.时间:2019.12.7—至今
3.关键词:华南海鲜市场、肺炎、新冠肺炎、新型冠状病毒肺炎、肺炎病毒
(二)挖掘类目
1.发文数量(总量、每天发文量及变动状态)
2.消息来源:原创/转载(转载来源)
3.报道类型:消息、通讯、深度报道、评论文章、其他
4.情感分析:
(1)情感指标搭建:目前大部分研究对情感分析采取二元(正、负)或三元(正、负、中),
情感倾向 情绪类型
积极情感 认可、期望、喜悦、敬畏、感动
消极情感 恐惧、质疑、担忧、反对、愤怒、悲哀
中性情感 惊讶
(2)新闻文本主题建模
模型以snowNLP提供的朴素贝叶斯文本倾向性算法为基础,[0,1]情感值,情感值越接近0表示情感越负面,情感值越接近1越正面。
得出表一:情感分析统计表
表二:情感倾向总表(正面情感新闻文本数量,其中认可、期望、喜悦、敬畏、感动情绪文章各自的数量)(负面情感新闻文本数量,其中恐惧、质疑、担忧、反对、愤怒、悲哀情绪文章各自的数量)(中性情感新闻文本数量,惊讶情绪文章的数量)
)
表三:每日情感倾向表(每日情感的变动)
表四:新闻文本的主题及关键词词云图
主题:
表五:正/负/中性情感主题内容
具体需求:二、 文本采集与情感分析
(一) 文本挖掘(爬虫或八爪鱼)
1.对象:澎湃新闻
2.抽样平台:澎湃新闻官方网站(澎湃新闻粉丝略胜一筹)
3.时间:2019.12.7—至今
3.关键词:华南海鲜市场、肺炎、新冠肺炎、新型冠状病毒肺炎、肺炎病毒
(二)挖掘类目
1.发文数量(总量、每天发文量及变动状态)
2.消息来源:原创/转载(转载来源)
3.报道类型:消息、通讯、深度报道、评论文章、其他
4.情感分析:
(1)情感指标搭建:目前大部分研究对情感分析采取二元(正、负)或三元(正、负、中),
情感倾向 情绪类型
积极情感 认可、期望、喜悦、敬畏、感动
消极情感 恐惧、质疑、担忧、反对、愤怒、悲哀
中性情感 惊讶
(2)新闻文本主题建模
模型以snowNLP提供的朴素贝叶斯文本倾向性算法为基础,[0,1]情感值,情感值越接近0表示情感越负面,情感值越接近1越正面。
得出表一:情感分析统计表
表二:情感倾向总表(正面情感新闻文本数量,其中认可、期望、喜悦、敬畏、感动情绪文章各自的数量)(负面情感新闻文本数量,其中恐惧、质疑、担忧、反对、愤怒、悲哀情绪文章各自的数量)(中性情感新闻文本数量,惊讶情绪文章的数量)
)
表三:每日情感倾向表(每日情感的变动)
表四:新闻文本的主题及关键词词云图
主题:
表五:正/负/中性情感主题内容